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Abstract. We describe a parallel algorithm that computes persistent homology, an algebraic descriptor of a

filtered topological space. Our algorithm is distinguished by operating on a spatial decomposition of the

domain, as opposed to a decomposition with respect to the filtration. We rely on a classical construction,
called the Mayer–Vietoris blowup complex, to glue global topological information about a space from its

disjoint subsets. We introduce an efficient algorithm to perform this gluing operation, which may be of
independent interest, and describe how to process the domain hierarchically. We report on a set of experiments
that help assess the strengths and identify the limitations of our method.

1. Introduction

Persistent homology was introduced fifteen years ago by Edelsbrunner, Letscher, and Zomorodian [1] and
later placed on a firm algebraic footing by Carlsson and Zomorodian [2]. From its roots as a method to
measure shape across scales, it has evolved into a rich mathematical theory with applications to clustering [3]
and dimensionality reduction [4], to materials science [5] and cosmology [6], to integral geometry [7] and
image analysis [8], to name just a few. We refer the reader to the several excellent surveys [9, 10, 11, 12, 13]
for a more detailed look at what makes persistence so exciting both to mathematicians and practitioners.

Without losing too much generality, we can think of persistence as operating on scalar functions, f : X → R.
It tracks evolution of homology classes (an algebraic formalization of “holes”) in the sublevel sets, f−1(−∞, a],
of these functions for varying values of threshold a. Specifically, it pairs those values of a where new homology
classes appear and where they die. Such birth–death information is valuable for inference (e.g., when the
domain X is high-dimensional and cannot be seen directly) and as a statistical descriptor of the function
that can be used, for example, to compare different measurements of a physical phenomenon.
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One ingredient in the success of persistent homology has been the development of efficient algorithms
for its computation. The original paper [1] introduced a cubic-time algorithm that computes persistence by
reducing a boundary matrix via a constrained Gaussian elimination. A different, output-sensitive analysis in
the same paper hints at why the algorithm performs so much more efficiently in practice than the worst-case
analysis would suggest. Since then an algorithm for computing persistence in matrix multiplication time has
appeared [14], with a matching lower bound [15]. Other notable theoretical results include an output-sensitive
algorithm that computes persistence in a top-down manner [16], the connection between different variations of
the original algorithm and algebraic dualities [17], including an algorithm to compute persistent cohomology [4]
and a data structure that improves its performance [18].

Another important direction in understanding computational aspects of persistence is the work on various
optimizations of the algorithms. Already the original paper [1] observed that one can get rid of the so-called
negative simplices during the computation. Another notable result is the clearing optimization [19], which
zeroes out entire columns of the matrix without processing them. It’s also possible to combine the two
optimizations together [20], although doing so requires a different algorithm.

Despite significant successes, there is still a large gap between the sizes of data sets that persistent homology
algorithms can process and what’s needed in practice. One way to close this gap is to develop parallel
algorithms and take advantage of the modern massively parallel computers. But any such attempt faces a
fundamental difficulty: topology tracks global information, while parallel computation thrives on locality.
In this paper we explore one approach to computing persistent homology in parallel. It’s distinguished by
dividing the work with respect to a spatial decomposition of the domain of the function, a feature important,
for example, for integrating with existing decompositions used in simulation codes.

Related work. Ours is not the first attempt to design a parallel algorithm for persistent homology. Broadly,
such algorithms can be split into two categories based on how they partition the computation between
processors. Algorithms in the first category divide the data by function value, grouping ranges of function
values together. Edelsbrunner and Harer [28] introduced the “spectral sequence algorithm,” which divides
the input matrix into blocks and processes them along diagonals. The algorithm is naturally parallel: blocks
within a diagonal can be processed independently. Bauer, Kerber, and Reininghaus [20, 21] have examined
the practical aspects of this algorithm. Notably they found clever ways to combine seemingly incompatible
optimizations and implemented the algorithm, both in shared and distributed memory.

Another way to parallelize persistence, when dividing the data by function value, is using zigzag persistent
homology [22]. The approach, suggested at the end of that paper, has not yet been tried in practice, as far as
we know.

The second way to break up the computation between processors is to partition the domain of the function,
assigning different regions to different processors. Although the approach sounds simple — it is probably the
most common way to divide data for independent processing — for persistence such a partition presents a
distinct challenge. Homology captures global properties of a topological space; persistent homology does so
for a large collection of topological spaces at once. Gluing information from different subsets of the domain
requires resolving certain algebraic issues. Translating any such resolution into a practical algorithm is a
challenge of its own.

Although formulated in a different language (of spectral sequences), the work of Lipsky et al. [23] is close
to ours, at least in spirit. They describe an algebraic construction that prescribes how to combine information
from different subsets of the domain into a coherent whole. There are two problems with that paper. First,
there is a serious technical error1, which the authors are aware of and have a possible correction (according to
a personal communication). The second problem is that, even if we restrict attention to ordinary homology
(where the mentioned algebraic problem does not exist), the algorithm is not sufficiently detailed. It does not
actually consider which information is available locally to any given processor, or what exactly is required to
compute a particular algebraic object in parallel. There are also subtler differences between our approaches
(for example, Lipsky et al. propose to collect information in the order of increasing dimension of the nerve,
whereas we pursue a hierarchical decomposition of the domain), but they are less important. In this paper,

1Briefly, the paper assumes that given a map between two persistent homology modules, the target module decomposes as

the direct sum of the image module and the cokernel module, which is not the case. Recovering the former decomposition from
the latter requires a certain amount of “repair.” In effect, Sections 3 and 4 of our paper are dedicated to performing such a

repair efficiently.
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we replace the algebraic construction with a geometric construction of Mayer–Vietoris blowup complex, which
contains the same information, but is much more transparent computationally.

Mayer–Vietoris blowup complex was introduced to the computational topology community by Zomorodian
and Carlsson [24], who used it to compute, what they called, localized homology. Although there is some
overlap between the keywords of our papers, the details diverge significantly. They use persistent homology
as a tool to localize homology classes to the individual sets of the cover. (And, accordingly, take a filtration
with respect to the second factor of the blowup.) We are concerned with using the blowup complex as a tool
to compute persistent homology of the base space. (And, therefore, filter by the first factor.)

Lewis and Zomorodian [25] use the Mayer–Vietoris blowup complex to compute ordinary homology in
parallel, in shared memory. The basic ideas overlap between our papers, but persistent homology imposes
more constraints on the operations one may perform during the matrix reduction. In the context of [25],
Sections 3 and 4 of our paper can be seen as a way to adapt their results to persistent homology. Our work
also finds more parallelism (afforded by the row operations) than exploited by Lewis and Zomorodian. As
such it can be seen as an improved way to compute ordinary homology (over a field), which comes out as a
byproduct of persistent homology. Also notably, Lewis and Zomorodian consider the complexity of cover
construction, an important question that we ignore entirely in this paper.

To conclude our review of related work, we also note the work on distributed computation and representation
of merge trees [26]. Merge trees can be used to recover 0-dimensional persistent homology, which is a very
special case computationally (with different complexity characteristics than the general case). In the present
paper, we are interested in the general problem in all dimensions.

Contributions. Our contributions are three-fold:

• we present the first parallel algorithm that computes persistent homology from a spatial decomposition
of the domain;

• we present an efficient procedure, Cascade in Section 4, that combines persistence pairs from different
subspaces of the domain into persistence pairs for the entire domain; that algorithm operates on
matrices with a particular structure and may be of independent interest in other contexts;

• we present experiments and describe practical limitations of our results.

2. Background

We briefly review the necessary background, but encourage the reader to consult a textbook on algebraic
topology (e.g., by Hatcher [29]) or on computational topology (e.g., by Edelsbrunner and Harer [28]) for a
thorough introduction to the subject.

Homology. Given a universal vertex set V , an (abstract) simplex is a subset of V , σ ⊆ V . The dimension
of a simplex is one less than its cardinality, dimσ = cardσ − 1. A subset of a simplex is called its face. A
simplicial complex K is a collection of simplices closed under the face relation, i.e., if σ ∈ K and τ ⊆ σ, then
τ ∈ K.

In applications, simplicial complexes often arise from geometric constructions. For example, given a point
set P with a metric d : P × P → R, one can build a Vietoris–Rips complex for a parameter r by recording
every subset σ ⊆ P , with d(x, y) ≤ r ∀x, y ∈ σ. It’s easy to verify that this construction is closed under the
face relation.

A k-chain is a formal sum of k-dimensional simplices, c =
∑
aiσi. Throughout the paper, for ease of

exposition, we assume the coefficients ai are elements of the field Z/2Z, so a chain can be thought of as a set
of simplices. The k-chains form an abelian group under addition, which we denote by Ck. The boundary map
∂k takes a k-simplex σ into the sum of its (k − 1)-dimensional faces. It extends linearly to the chain groups
Ck, giving an operator ∂k : Ck → Ck−1.

The kernel of this operator, Zk = ker ∂k, is called the cycle group; by definition, it consists of all the
chains with an empty boundary. The image of the operator, Bk = im ∂k+1, is called the boundary group.
A homology group is the quotient, Hk = Zk/Bk; it’s the group of non-bounding cycles. It is convenient to
suppress the dimensions by taking the direct sum of chain groups across all dimensions, C(K) = ⊕Ck(K),
with ∂ : C(K)→ C(K), and H(K) = ker ∂/ im ∂.
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Algorithm 1 Persistence reduction algorithm.

ELZ(D):

R = D, U = I
for all columns R[·, i] do

while R[·, i] 6= 0 and ∃ j < i with lowR[·, i] = lowR[·, j] do
R[·, i] = R[·, i]−R[·, j]
U [j, i] = 1

Persistent homology. A nested sequence of simplicial complexes, K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, is called a
filtration of K. Passing to homology, we get a sequence of homology groups (one for each complex in the
filtration), connected by linear maps induced by the inclusions.

(1) H(K0)→ . . .→ H(Ki)→ . . .→ H(Kn)

We denote the maps induced by inclusions of the simplicial complexes by f ji : H(Ki)→ H(Kj). Persistent
homology tracks how elements appear and disappear in this sequence. We say that an element α ∈ H(Ki)

is born in H(Ki) if it’s not in the image of the map f ii−1. We say that α dies at H(Kj) if f ji (α) ∈ im f ji−1,

but f j−1i (α) /∈ im f j−1i−1 . If there is an element α born in H(Ki) that dies in H(Kj), we record this as a pair
(i, j). The goal of algorithms for computing persistent homology is to compute all such pairs (i, j) for a given
filtration.

The following theorem characterizes when two sequences of homology groups produce the same persistence
pairing.

Persistence Equivalence Theorem [28]. Given two filtrations L0 ⊆ . . . ⊆ Ln and K0 ⊆ . . . ⊆ Kn,
the induced sequences of homology groups produce the same persistence pairs, if there are isomorphisms
H(Li)→ H(Ki) that commute with inclusions. In other words, if the vertical maps in the following diagrams
are isomorphisms, and the diagram commutes.

H(K1) . . . H(Ki) . . . H(Kn)

H(L1) . . . H(Li) . . . H(Ln)

// // // //

//

OO

// //

OO

//

OO

Algorithms. Assume that we are given a filtration K0 ⊆ . . . ⊆ Ki ⊆ . . . ⊆ Kn = K, where Ki+1 = Ki∪σi+1.
We represent the boundary map, ∂ : C(K)→ C(K), as a matrix D, where D[i, j] = 1 if (k − 1)-simplex σi is
a face of k-simplex σj ; D[i, j] = 0 otherwise. Notice that given such a representation, every upper-left square
sub-matrix of D, sub-matrix consisting of rows and columns [0 . . . i], represents the boundary map of the
subcomplex Ki, ∂i : C(Ki)→ C(Ki).

Given such a matrix, we can compute the persistence pairing in the sequence of homology groups (1) using
algorithm ELZ(D), Algorithm 1, introduced by Edelsbrunner et al. [1]. Let “lowR[·, i]” denote the lowest
non-zero entry in the column R[·, i] (the map is undefined if the column is zero). We say that the matrix R is
reduced if the lowest non-zero entry in every column falls in a unique row; in other words, if the map low is
injective. The original algorithm [1] computes only the matrix R by greedily subtracting columns from left to
right until no two columns have the lowest non-zero entry in the same row. When this happens, the lowest
non-zero entries of the reduced matrix R record the sought after persistence pairing, i.e., we have a pair (i, j)
in the sequence H(K0)→ . . .→ H(Kn) if and only if lowR[·, j] = i.

An additional matrix U was introduced in a later work [27], which reinterpreted persistence computation
as finding a decomposition D = RU , where the matrix R is reduced and the matrix U is invertible upper
triangular. The crucial insight of that paper was that for any such decomposition, we get the same lowest
non-zero entries in the columns of R (i.e., the same map lowR). In particular, this means that one can
subtract columns of R in any order, as long as such operations always happen from left to right. If in
the end the matrix R is reduced, then we recover the correct pairing. We denote by rD(i, j) the following
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Algorithm 2 Column sparsification algorithm.

Sparsify(R):

P = R, S = I
for all rows P [i, ·] of P from bottom up do

if P [i, j] is not zero then
for all non-zero entries P [i′, j] in P [·, j], with i′ 6= i do

P [i′, ·] = P [i′, ·]− P [i, ·] # zero out the entry P [i′, j]
S[·, i] = S[·, i] + S[·, i′]

inclusion-exclusion of ranks of lower-left sub-matrices of D,

rD(i, j) = rkDj
i − rkDj

i+1 + rkDj−1
i+1 − rkDj−1

i ,

where rkDj
i denotes the rank of the lower-left sub-matrix of D, namely the sub-matrix that retains rows

[i..n] in columns [0..j].

Lemma 1 (Pairing Uniqueness Lemma [27]). Letting D = RU , we have lowR[·, j] = i iff rD(i, j) = 1. In
particular, the pairing function does not depend on the matrix R in the RU-decomposition.

We do not repeat the proof of the lemma here, but briefly recall that it depends on the fact that if R is
reduced then lowR[·, j] = i iff rR(i, j) = 1. Then it’s easy to see that left-to-right column operations will not
change the ranks of lower-left sub-matrices and, therefore, rR(i, j) = rD(i, j).

For the present work, we need to extend this lemma to allow row operations on the matrix R.

Lemma 2. Letting D = SRU , where S and U are invertible upper-triangular and R is reduced, we have
lowR[·, j] = i iff rD(i, j) = 1.

The proof is the same as before. Neither the left-to-right column operations, expressed by the matrix
U , nor the bottom-up row operations, expressed by matrix S, change the ranks of lower-left sub-matrices.
Therefore, rR(i, j) = rD(i, j).

As an immediate consequence of the amended lemma, we can choose the matrix S to be such that we get
a decomposition D = SPU , where P is not only reduced, but it has at most one non-zero entry per column.
To achieve this, we first perform the reduction prescribed by the ELZ(D) algorithm to get the decomposition
D = RU . Then we go through the rows of the matrix R from the bottom up and, whenever we encounter
a (unique, by induction) non-zero in a row, we subtract it from the rest of the entries in its column. This
operation is formalized in the algorithm Sparsify(R), Algorithm 2. For clarity, we prove its correctness.

(Correctness of Algorithm 2). We want to show by induction that after the outer loop processes row i, the
columns with the lowest non-zero entries in rows i and below have a unique non-zero entry, and the matrix P
remains reduced. The base case is trivially true: either the lowest row of the matrix P is zero, or it has a
unique non-zero entry since the input matrix R is reduced. Suppose the statement is true after the outer
loop completes processing row i+ 1. When processing row i, either the row is empty, and we are done, or
again it has a unique non-zero entry. Why? Suppose there is more than one non-zero entry in the row.
Then either all of them are the lowest entries in their columns, which would violate the assumption that the
matrix P is reduced, or some of them have lower entries in their columns, which would violate the inductive
hypothesis. Since the non-zero entry P [i, j] is unique, after the inner loop of the algorithm, the column above
it is zero, matrix P remains reduced, and the statement is true for all the rows up to i. By induction, at
termination, the algorithm produces matrix P that is reduced and each of whose columns has at most one
non-zero entry. �

Blowup complex. We recall a classical construction used for gluing topological information from multiple
disjoint subsets of a space. Its features relevant to our work are explained perspicuously by Zomorodian and
Carlsson [24]; the original description of the structure was given by Segal [30]. Given a cover C = {Ki}i∈I of
a complex K by simplicial subcomplexes Ki ⊆ K, we denote the intersection of subcomplexes indexed by
J ⊆ I by KJ = ∩j∈JKj .
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Figure 1. Left: Simplicial complex K. The subcomplexes of the cover are highlighted
with three shaded regions. Right: The resulting blowup complex KC, with the disjoint
subcomplexes of the cover shown in red, green, and blue.

Definition 3. The Mayer–Vietoris blowup complex of simplicial complex K and cover C, KC ⊆ K × I, is
defined by

KC =
⋃

J⊆I

⋃

σ∈KJ

σ × J.

Figure 1 illustrates a simplicial complex, covered by three subcomplexes, and the resulting blowup complex.

Chain complex of the blowup. A basis for the chain complex may be prescribed via tensor products
C∗(KC) = 〈σ×J | σ×J ∈ KC〉 [24, Section 4.3]. The tensor product structure endows the boundary operator
of the blowup complex with a useful structure. The boundary of a cell σ× J ∈ KC is given by [24, Lemma 4],

(2) ∂(σ ⊗ J) = ∂σ ⊗ J + (−1)dimσσ ⊗ ∂J.
With a boundary operator defined we may now consider the homology of the blowup complex H(KC).

Let π : KC → K denote the projection of the blowup complex onto the first factor. This map is a
homotopy equivalence [24]. We do not define this technical term, but note that it implies that the map
π∗ : H(KC)→ H(K), induced on homology, is an isomorphism.

In moving to persistent homology, we need only specify a partial order on the KC . Given a subcomplex
L ⊆ K, its blowup complex (where the cover is the restriction of the original cover, Li = Ki ∩ L),

LC =
⋃

J⊆I

⋃

σ∈(KJ∩L)
σ × J,

is a subcomplex of the blowup complex of KC, LC ⊆ KC. The projection map, πL : LC → L, is also a
homotopy equivalence, so the map π∗L : H(LC)→ H(L), induced on homology groups, is an isomorphism. We
arrive at the main reason for using the Mayer–Vietoris blowup complex.

Theorem 4. A filtration K1 ⊆ . . . ⊆ Ki ⊆ . . . ⊆ K of the base complex K induces a filtration KC1 ⊆ . . . ⊆
KCi ⊆ . . . ⊆ KC of the blowup complex. Passing to homology, we get two sequences of homology groups
connected by isomorphisms,

H(K1) . . . H(Ki) . . . H(Kn)

H(KC1 ) . . . H(KCi ) . . . H(KCn)

// // // //

//

OO

π∗
1

// //

OO

π∗
i

//

OO

π∗
n

The persistence pairs in the two sequences are the same.

Proof. The vertical maps are isomorphisms. The projections πi commute with the inclusions, so the entire
diagram commutes. Persistence Equivalence Theorem implies that the persistence pairs in the top and bottom
sequences are the same. �

In other words, we can compute the persistence pairing of the filtration of K from the filtration of KC .
We end this section by noting that in the filtration of KC, the complex is not constructed one cell at a

time, i.e., the difference between KCi+1 and KCi may consist of multiple cells. Within an algorithm we may
break these ties in the partial order arbitrarily, as long as we respect the dimension of the cells. So we order
the cells in KCi+1 −KCi by the dimension of their second factor.
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D0

D1

D2

KC
>0

. . .

Q0

Q1

Q2

...

Figure 2. Schematic structure of the boundary matrix of the blowup complex. Only shaded
regions may be non-zero.

3. Algorithm

It is helpful to understand the special structure of the boundary map (2) in the blowup complex. Over
Z/2Z coefficients, the boundary of a cell σ × J ∈ KC becomes

∂(σ ⊗ J) = ∂σ ⊗ J + σ ⊗ ∂J.

Let the matrix DC represent this boundary map, with columns and rows ordered to respect the given filtration
of KC. In other words, if we were to reduce DC using the ELZ(DC) algorithm, we would get the correct
persistence pairing.

Suppose we reorder the columns and the rows of DC as follows. We group together the rows and the
columns σ × {i} that belong to the individual disjoint sets of the cover (ordering them by filtration within
these sets), and we group together columns that correspond to the cells σ × J , where the second factor J has
dimension higher than 0, again ordering by filtration within those columns. Figure 2 shows this structure
schematically: D0, D1, D2 denote the sub-matrices of the disjoint sets, i.e., the columns of Di record the
boundaries of the cells σ × {i}, where σ ∈ Ki. The right-most block of shaded columns represents the
cells with higher-dimensional second factor, i.e., the cells σ × J , where dim J > 0. We denote by Qi their
sub-blocks that fall into the rows σ × {i} that correspond to the cells of the disjoint union. Notice that
outside the shaded regions in Figure 2, the matrix is necessarily zero.

We observe that because we’ve ordered the cells within the blocks by filtration, we may carry out operations
within the blocks — column operations from left to right, row operations from bottom up — without violating
the column and row order within the original matrix DC .

Accordingly, we may column-reduce individual matrix blocks independently, decomposing Di = RiU i

using ELZ(Di) algorithm. We may further row-reduce matrices Ri, getting decomposition Di = SiP iU i

using Sparsify(Ri) algorithm. (The matrix P i has an immediate interpretation: it records the persistence
pairs in the restriction of the input filtration to the cover set Ki.) To be consistent in the full boundary
matrix DC , we must perform the row operations on the full rows, thus replacing blocks Qi with blocks SiQi.
We call the resulting matrix T ′, see Figure 3.

It is helpful to note the structure of the blocks Qi. Which blowup cells have the base cells of the disjoint
union, σ × {i}, in their boundary? First of all, these are the cells τ × {i}, with σ ∈ ∂τ ; the first factor of
their boundary map (2) consists of the cells σ×{i}. Their boundaries define the columns of the sub-matrices
Di. The second type of a cell that has σ × {i} in its boundary are the cells σ × {i, j}, where cover set Kj

intersects cover set Ki. The part of the row of cell σ × {i} that falls into the block Qi has non-zero entries in
the columns of such cells. These are the only two possibilities allowed by the boundary formula (2). Most
rows of matrices Qi are zero, since only cells that fall into more than one cover set have non-zero entries in
the columns of Qi.
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KC
>0

. . .
...

P 0

P 1

P 2

S0Q0

S1Q1

S2Q2

Figure 3. The matrix T ′, formed out of the boundary matrix of the blowup complex after
the initial column and row reductions.

Now, if we reorder the columns and the rows of the matrix T ′ back into the original filtration order, call
the resulting matrix T , and reduce it using algorithm ELZ(T ), the low map on the resulting matrix RT will
produce the correct persistence pairing.

Theorem 5. (i, j) is a pair in H(KC0 )→ . . .→ H(KCn) if and only if lowRT [j] = i.

Proof. We pad and reorder the rows and columns of matrices Si and U i so that they match the original
blowup boundary matrix DC. (The padding is to identity, i.e., the newly added rows and columns have
1s on the diagonal, so the padded matrices remain invertible upper-triangular.) Since the operations in
matrices Di respected the filtration order, the padded matrices Si and U i remain invertible upper-triangular.
Therefore, so are their products S = S0 · S1 · . . . and U = U0 · U1 · . . . Therefore, the first set of independent
reductions results in the decomposition DC = STU , with T appropriately reordered. Now reducing the matrix
T using ELZ(T ) algorithm produces decomposition T = RTUT , where RT is reduced and UT is invertible
upper-triangular. Therefore, the complete decomposition is DC = SRT (UTU), and Lemma 2 implies the
claim. �

Parallel setup. If we have p cover sets, i.e., p = card I, then we can split the initial operations ELZ(Di)
and Sparsify(Ri) between p processors. The final reduction ELZ(T ) can be performed by either one of
them. If all the processors share the same memory, we may be satisfied with this solution, although we can
perform a little more work in parallel, as explained in Section 5.

If the memory is distributed, the separate bits of information P i and SiQi, necessary for the final reduction,
need to be brought to a single processor. In Section 5 we explain how this operation can be performed using a
binary reduction. Meanwhile, we mention a simple, but important optimization: it suffices to send only those
rows of P i that are not zero in SiQi; the rows that are zero in SiQi record the pairs that will not change.

4. Cascade

So far it is unclear why we performed the seemingly unnecessary sparsification step, converting matrices
Ri into matrices P i. The sparsification is advantageous since it reduces the potentially quadratic size of
matrices Ri down to the linear size of matrices P i. In the distributed setting, this means less data to send to
the processor responsible for the final reduction. But there is another advantage. The combined matrix T
has a special sparsity pattern. This structure allows for a faster reduction even using the standard ELZ(T )
algorithm. In addition, with a little extra work, presented in algorithm Cascade(T ), Algorithm 3, we can
preserve this structure throughout the computation and thus gain efficiency both in time and in space.

Suppose there are n =
∑
i∈I cardKi cells in the blowup complex that fall into the disjoint union, and

there are m cells with higher-dimensional second factor, m = card{σ × J | σ × J ∈ KC ,dim J > 0}. We
assume m < n. Then reducing the matrix T using ELZ(T ) algorithm takes, in the worst case, O

(
n2m

)
time
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Figure 4. Structure of the matrix T prior to the reduction. Shaded columns are dense.
The rest of the columns are ultra-sparse, they have at most one non-zero entry.

and O
(
n2
)

space. (The reason why the time complexity is tighter than O
(
n3
)

is similar to the analysis in
the proof of Theorem 7 below.)

The matrix T has special structure, see Figure 4. The n columns of the disjoint union are formed by
matrices P i, which have at most one non-zero entry per column. We call such columns ultra-sparse. The
remaining m columns are dense. Given such a matrix, with n ultra-sparse columns and m dense columns, we
can reduce it as follows.

We iterate over the rows of the matrix T from the bottom up, and consider the columns whose lowest ones
fall into a given row. Let J be the set of their indices. At most one such column can be ultra-sparse because
the matrices P i are reduced. Let j denote the first column in the set J . We can subtract it from every other
column in J . If one of those columns is ultra-sparse and column j is dense, then the ultra-sparse column
becomes dense. To keep the number of dense columns constant, we subtract the current row (which after the
column operations has a single non-zero in column j) from every other row with a non-zero entry in column j.
In other words, we zero out column j, making it ultra-sparse. Algorithm 3 performs the described operations.

Algorithm 3 Cascade algorithm for the reduction of the matrix T with ultra-sparse columns.

Cascade(T ) :

for all rows T [i, ·], from bottom up do
J = columns with the lowest non-zero entry in row T [i, ·]
j = min J
for all j′ ∈ J, j′ > j do

subtract T [·, j] from T [·, j′]
for all i′ < i with T [i, j] 6= 0 do

subtract T [i, ·] from T [i′, ·] # zero out all but the lowest entry of column T [·, j]

Since Cascade(T ) performs operations from left to right and from bottom up, Lemma 2 immediately
implies its correctness.

Theorem 6. Lowest ones of the matrix T reduced using Cascade(T ) algorithm produce the correct pairing
of the sequence of homology groups, H(KC0 )→ . . .H(KCn).

What is the worst case complexity of Cascade(T )?

Theorem 7. Cascade(T ) algorithm reduces the matrix T with n ultra-sparse and m dense columns in time
O
(
n2m

)
, while keeping its size O (nm).

Proof. The initial number of nonzero elements in the matrix T is in O ((n+m)m+ n) = O (nm). Since
the number of dense columns is kept constant (or, more accurately, it never increases) thanks to the row
operations that clear out column j, the space used during the cascade remains in O (nm).
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︷ ︸︸ ︷ ︷ ︸︸ ︷
︷ ︸︸ ︷

i+ 1 i+ 1

i

D1

D2

Q1

Q2

D3

D4

Q3

Q4

Figure 5. The structure of the boundary matrix for three consecutive levels of the hierarchy.

It takes O (n+m) time to add two dense columns, or to add a dense column to a sparse column. How many
such operations are there? At most m per row. There are n+m rows, for a total of O

(
(n+m)2m

)
= O

(
n2m

)

operations. �

5. Hierarchy

So far we have considered the case of a single cover of the domain, a collection of simplicial complexes
C = {Ki}I with domain K =

⋃
C. But in many applications, it is natural to build a hierarchy of such covers.

For example, if the domain K triangulates a cube or a flat torus (a cube with periodic boundary conditions),
both exceedingly common scenarios for simulation data, one can build a refinement of covers following an
oct-tree partition of the cube. The cubes at each level of the oct-tree become the cover sets. (Technically, the
cover sets are the closures of the subcomplexes of K that intersect those cubes.)

Given such a hierarchy, it becomes possible to follow the standard reduction pattern and merge sets
together in pairs (or, more generally, in small groups) and thus to extend the amount of useful work a
processor can do. It also limits how many dense columns m a single processor has to handle at once. Consider
the prototypical oct-tree example. If we have p = 8k processors and descend down to the k-th level in the
tree, we end up with p cubes and m = 3 · 2k · c shared simplices, where c is the number of simplices in a side
of the cube. On the other hand, if we merge the cubes in pairs (proceeding to a higher level in the oct-tree
after each merge), m never exceeds c, the size of the initial cut that splits the domain into two.

We can abstract the hierarchical partition of an oct-tree as a nested collection of covers C0, C1, . . ., such
that K =

⋃
C0 =

⋃
C1 = . . . and every cover set Li ∈ Ca is contained in exactly one cover set Kj ∈ Ca−1,

Li ⊆ Kj .
Consider the structure of the boundary matrix for two consecutive levels in the cover, illustrated in Figure 5.

Suppose at level i + 1 the cover consists of four sets, Ci+1 = {K1,K2,K3,K4}, and at level i the cover
consists of two sets Ci = {K1 ∪K2,K3 ∪K4}. The procedure outlined in Sections 3 and 4 would operate
independently on the matrices D1, D2, D3, and D4 (on four different processors). The first two results would
then be combined by first performing row updates on the matrices Q1 and Q2, then reordering the matrix
and reducing it using the Cascade algorithm. The second pair of results would be combined similarly. The
two combined matrices contain the same information as the reduced boundary matrices R12 and R34 for the
cover sets K1 ∪K2 and K3 ∪K4 at level i. We could proceed with the algorithm at level i, with one caveat:
the higher rows (the second to last column in the figure) involved in the combination did not get updated
during the execution of Sparsify and Cascade algorithms. The fix is straight-forward: when processing any
given level of the cover, we perform the row operations on the full rows, rather than on their restriction to
the given level. The only information necessary to construct such rows is knowing which sets of the cover
contain any given simplex.
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Figure 6. Times to compute persistence diagram for the 2562 × 512 combustion data set.

6. Experiments

We have implemented the described algorithm on top of MPI, and ran a strong scaling experiment on
Edison supercomputer at the National Energy Research Scientific Computing Center (NERSC). Edison is a
Cray XC30 system; its individual compute nodes have 24 Intel ‘Ivy Bridge’ processor cores, at 2.4 GHz, with
64KB and 256KB of L1 and L2 cache, respectively; the 24 cores share 64GB of RAM.

Our input is a snapshot of a combustion simulation, a 2562× 512 scalar field. The input simplicial complex
is a Freudenthal triangulation of the grid, with ∼ 870 · 106 simplices. It is covered hierarchically via an
oct-tree.

Figure 6 summarizes the running times (wallclock as reported by the PBS job resource manager). Going
from 8 to 32 processes we see a near perfect scaling, with another improvement by a factor of ∼ 1.5 going
from 32 to 64 processes. But then the returns diminish rapidly. The behavior is not surprising: past 64
processes the binary reduction used to merge different cover sets is top-heavy, i.e., it’s dominated by the
merge of the information from the final two sets. As a result, adding more processes only speeds up the
initial computation, which is already plenty fast.

What is worse is what the figure does not show. We have tried our code on larger data sets, but ran out of
memory because the merge reduction is dominated by its final stages. Although the (n+m) term in the space
analysis of the Cascade algorithm is a gross worst-case overestimate, the growth of this term does follow the
growth of n, the size of the domain, in many practical examples. So our technique does not solve the memory
limitations of the persistence algorithm for the large data sets. We address this issue in the next section.

7. Conclusion

Despite the evident limitation of a merge reduction, we believe our theoretical results have a place as
building blocks of a practical parallel persistence algorithm. In particular, an interesting (and, we believe,
promising) research direction is combining the domain decomposition approach of our paper with the spectral
sequence algorithm [28, 21]. One could initially distribute the data with respect to a domain decomposition:
often such a distribution is either very cheap to compute, or entirely free in the cases when the data is
supplied already decomposed directly from a simulation code, or it is stored decomposed (for I/O-efficiency).
In this case, much processing could be performed on the individual chunks of the data; this part of our
algorithm scales perfectly. Then, when combining the individual results, one could redistribute the remaining



12 PARALLEL COMPUTATION OF PERSISTENT HOMOLOGY USING THE BLOWUP COMPLEX

matrix (the input to the Cascade algorithm) with respect to the diagonal block partition of the spectral
sequence algorithm. This way we could limit the space needed on any given processor.

Another important research topic is adapting our algorithm to the computation of persistent cohomology.
Although the resulting pairing is the same, algorithms that keep track of cocycles rather than cycles have
been reported to perform significantly better in practice [17, 18]. On the other hand, they are built around
tracking the matrix U−1 in the D = RU decomposition, while the algorithm that we’ve presented depends
on manipulating the matrix R.

Similarly, it would be fruitful to understand the relationship of our algorithm to various practical
optimizations [20]. Unexpectedly to us, the original optimization [1] that removes negative simplices from
the columns of the matrix R cannot be used in our context. The reason is that a simplex that is negative
in the filtration of a cover subcomplex Ki may be positive in the filtration of the entire space K. On the
other hand, if a simplex creates a cycle in the filtration of Ki (i.e., it is positive), it must be positive in the
filtration of the entire K. Thus the clearing optimization of Chen and Kerber [19] is readily applicable.
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